[TensorFlow Certification Day1] 環境安裝


Posted by Kled on 2020-08-12

有鑑於自己的工作越來越吃重TensorFlow上的技術,
剛好有天被youtube演算法帶到有人考過TensorFlow Certification的影片燒到
加上自己未來想走的方向, 就下定決心要把這張證照拿起來
tensorflow certification

看完了Hankbook跟環境準備後做個摘要

測試主要目標 : 測試有能力用TensorFlow2.x去建立model解決問題

  • Build and train neural network models using TensorFlow 2.x
  • Image classification
  • Natural language processing (NLP)
  • Tim series, sequences and predictions
  • 要使用Pycharm
  • 測試時間5hrs
  • 一次測試要100美金 (加入獎學金計畫, 測驗金額減半)
  • 考試的時候要用甚麼資源都可以, 但不能多人一起考
  • 證照有效期限36個月
  • python = 3.7
  • tensorflow = 2.x

原本以為PyCharm應該不會太難安裝, 結果搞了一個晚上


環境設置

因為到時候好像是要用PyCharm sumit model上去, 所以強烈建議從現在開始熟悉PyCharm
要安裝python3.7環境, 如果沒有把握可以安裝乾淨的環境就直接上python官網抓吧
python3.7.7
安裝完後選擇create project

Base interpreter要記得填入剛剛安裝python3.7的python.exe的位置

接下來就是安裝package
File->Settings->Project: xxx->Python Interpreter

按下'+', 裡面就可以選擇要安裝甚麼套件
根據官方介紹至少要安裝下面五個套件

  • tensorflow
  • tensorflow-datasets
  • numpy
  • Pillow
  • urllib3

建議試跑一下下面兩個example確定沒問題, 才代表環境應該安裝完成
example1 :

import matplotlib.pyplot as plt
import numpy as np
import os
import PIL
import tensorflow as tf

from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential

import pathlib
dataset_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz"
data_dir = tf.keras.utils.get_file('flower_photos', origin=dataset_url, untar=True)
data_dir = pathlib.Path(data_dir)


image_count = len(list(data_dir.glob('*/*.jpg')))
print(image_count)

roses = list(data_dir.glob('roses/*'))
PIL.Image.open(str(roses[0]))


PIL.Image.open(str(roses[1]))

tulips = list(data_dir.glob('tulips/*'))
PIL.Image.open(str(tulips[0]))

PIL.Image.open(str(tulips[1]))

batch_size = 32
img_height = 180
img_width = 180

train_ds = tf.keras.preprocessing.image_dataset_from_directory(
  data_dir,
  validation_split=0.2,
  subset="training",
  seed=123,
  image_size=(img_height, img_width),
  batch_size=batch_size)

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
  data_dir,
  validation_split=0.2,
  subset="validation",
  seed=123,
  image_size=(img_height, img_width),
  batch_size=batch_size)

class_names = train_ds.class_names
print(class_names)


AUTOTUNE = tf.data.experimental.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

normalization_layer = layers.experimental.preprocessing.Rescaling(1./255)

normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
image_batch, labels_batch = next(iter(normalized_ds))
first_image = image_batch[0]
# Notice the pixels values are now in `[0,1]`.
print(np.min(first_image), np.max(first_image))

num_classes = 5
model = Sequential([
  layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(32, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(64, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Flatten(),
  layers.Dense(128, activation='relu'),
  layers.Dense(num_classes)
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

model.summary()

epochs=10
history = model.fit(
  train_ds,
  validation_data=val_ds,
  epochs=epochs
)

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss=history.history['loss']
val_loss=history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(8, 8))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

example 2 :

import tensorflow as tf

from tensorflow import keras
from tensorflow.keras import layers

import tensorflow_datasets as tfds

tfds.disable_progress_bar()

embedding_layer = layers.Embedding(1000, 5)
result = embedding_layer(tf.constant([1, 2, 3]))
result.numpy()

result = embedding_layer(tf.constant([[0, 1, 2], [3, 4, 5]]))
result.shape
(train_data, test_data), info = tfds.load(
    'imdb_reviews/subwords8k',
    split=(tfds.Split.TRAIN, tfds.Split.TEST),
    with_info=True, as_supervised=True)
encoder = info.features['text'].encoder
encoder.subwords[:20]
train_batches = train_data.shuffle(1000).padded_batch(10)
test_batches = test_data.shuffle(1000).padded_batch(10)
train_batch, train_labels = next(iter(train_batches))
train_batch.numpy()
embedding_dim = 16

model = keras.Sequential([
    layers.Embedding(encoder.vocab_size, embedding_dim),
    layers.GlobalAveragePooling1D(),
    layers.Dense(16, activation='relu'),
    layers.Dense(1)
])

model.summary()
model.compile(optimizer='adam',
              loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
              metrics=['accuracy'])

history = model.fit(
    train_batches,
    epochs=10,
    validation_data=test_batches, validation_steps=20)
import matplotlib.pyplot as plt

history_dict = history.history

acc = history_dict['accuracy']
val_acc = history_dict['val_accuracy']
loss = history_dict['loss']
val_loss = history_dict['val_loss']

epochs = range(1, len(acc) + 1)

plt.figure(figsize=(12, 9))
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()

plt.figure(figsize=(12, 9))
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.ylim((0.5, 1))
plt.show()
e = model.layers[0]
weights = e.get_weights()[0]
print(weights.shape)  # shape: (vocab_size, embedding_dim)
import io

encoder = info.features['text'].encoder

out_v = io.open('vecs.tsv', 'w', encoding='utf-8')
out_m = io.open('meta.tsv', 'w', encoding='utf-8')

for num, word in enumerate(encoder.subwords):
    vec = weights[num + 1]  # skip 0, it's padding.
    out_m.write(word + "\n")
    out_v.write('\t'.join([str(x) for x in vec]) + "\n")
out_v.close()
out_m.close()
try:
    from google.colab import files
except ImportError:
    pass
else:
    files.download('vecs.tsv')
    files.download('meta.tsv')

今天先到這裡為止, 明天應該會開始規畫整個課程學習要花多少時間跟怎麼分配時間


#TensorFlow #machine learning #機器學習 #tensorFlow Certification #AI #人工智慧 #證照







Related Posts

24. Visitor

24. Visitor

[第六週]  CSS  Part4 - Position 定位

[第六週] CSS Part4 - Position 定位

滲透測試重新打底(3.7)--論Web入侵之SSTI漏洞

滲透測試重新打底(3.7)--論Web入侵之SSTI漏洞


Comments